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Abstract: An interpretable algorithm is developed to identify the COVID-19 infection using exhaled breath 

profiling and its features. The preliminary study was conducted with 100 subjects, where 50 with positive 

COVID-19 category 2 condition. A two minutes of exhaled breath pattern was recorded using a nasal cannula 

sampling tube, resulting in the collection of exhaled breath waveforms from each subject. The developed 

algorithm is utilized to evaluate the valid exhaled breath waveforms and compute the features classified to 

distinguish COVID and non-COVID condition. The significant features showed good predictive power for 

compliance with p-value analysis with area under the receiver operating characteristic (ROC) curve of 0.500 

– 0.550. Exhaled breath profiling with developed algorithm is an alternative approach of detecting COVID-19 

infection at clinical practice and expected to replace the invasive sampling of the virus infection with further 

validation in future studies.  
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1. Introduction 

      COVID-19 disease is defined as a respiratory infection, which leads to severe pulmonary complications 
and multi-organ infection. The historical evidence caused by pneumonias such as SARS and MERS have 
been recapitulated by the severe impact caused by SARS-CoV-2 virus spreading, resulting in unmanageable 
infectivity rate and huge number in death [1]. The wide spread of COVID-19 global pandemic forced recent 
medical experts to focus on the disease virology, physiology, and immunology for clinical practices to curb 
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the pandemic. The infected COVID-19 subjects reported to exhibit an acute abnormal breathing pattern 
both during and after their infection [2]. Breath based detection gained huge attention in clinical practices 
as it highly reduces the workload and cost associated with invasive sampling such as nasal swabs, and other 
sophisticated sampling techniques such as RT-PCR, isothermal amplification techniques, and enzymatic 
assays [3]. Breath sampling is rapid and repeatable. It shows huge potential for primary COVID-19 
screening upon patient admission, which would help to initiate the preventive actions at clinical practices. 
Experts in clinical practice have recommended initiating invasive ventilation as soon as the patients show 
sudden surge in respiratory symptoms as critical care providers become more familiar with the harmful 
course of the COVID-19. Exhaled breath in this content involves non-invasive measurement of the 
concentration of carbon dioxide (CO2) [4]. Exhaled breath contains useful information for the diagnosis of 
respiratory airway diseases including asthma and chronic obstructive pulmonary disease (COPD) [5,6]. In 
this study, a novel algorithmic approach for detecting COVID-19 condition using exhaled breath is 
presented. This study aims to evaluate the CO2 partial pressure variation in a COVID-19 patient. Fig 1 
shows the schematic illustration of the proposed approach of identifying COVID-19 using exhaled CO2 gas 
and the developed algorithm for exhaled breath cycle profiling. 
 

 
Fig 1: Illustration of the utilizing exhaled breaths for identifying COVID-19 using proposed algorithm. 

 
2. Methodology 

2.1 Clinical Data Sources 

     Clinical data collection was conducted at a public hospital in Malaysia between February to March 2022. 
The clinical study is registered in the National Medical Research Register (NMRR) with the reference 
number (NMRR-21-763-59692). Adult COVID-19 patients between 18 to 60 years of age range were 
targeted for this study. Patients with only COVID-19 category 2 (CAT 2) infection stage were approached 
to participate in this study. Patients with asthma, COPD, and pulmonary edema history are excluded to 
ensure the CO2 exhaled breaths recording is not affected by other respiratory complications. The CO2 breath 
analysis was carried out with 100 participants, where the confirmed COVID-19 CAT 2 participants, 𝑛𝑃is 
50. The study was evaluated with 50 non-COVID patients, 𝑛𝑁, who were negative COVID-19 participants. 
COVID-19 with CAT 2 infection stage were validated with RTK test kit upon arrival.  
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2.2 Feature Extraction Algorithms 

      A sorting hierarchical algorithm as shown in Figure 2 is developed to analyze the exhaled breath 
recorded. The algorithm begins by implementing digital filter to remove all unwanted noise. A first order 
FIR low pass filter with the cut-off frequency of 10 Hz and a moving average filter is used for this purpose 
[8].  Later, the algorithm for valid breath cycle selection is developed by assessing the minimum end-tidal 
carbon dioxide (EtCO2) value, peak-to-peak distance, and the pathologic properties of exhaled breath 
waveform. The selection criteria outlier exhalation breath cycles in the waveform pattern, which are 
designated as the valid CO2 signal recorded from a patient. As each valid breath cycle is identified, the 
algorithm sends information to segmentize CO2 signal waveform into five epochs. Epoch segmentation is 
the crux of the presented study. Each valid exhaled breath cycle extracted is segmented into five epochs by 
employing a CO2 partial pressure threshold value. These epochs are the original proposal of the study, 
which contrasts with the visual analysis of capnogram waveform that is known in capnography technology 
[7], where the alveolar plateau and EtCO2 peak value were highly prioritized. These segments were 
generated by considering the average CO2 partial pressure in a breath cycle. The partial pressures in the 
expiration curve and inspiration curve are concentrated in generating the epochs. E1 and E2 represent the 
expiration region, where E4 and E5 represent the inspiration region of a waveform. E3 shows the end-tidal 
point of a waveform, where the epoch is measured 0.25s from the EtCO2 and to the EtCO2 peak. The epoch 
is developed as such due to the trend-line based analysis performed in this study [10]. This information is 
embedded in the developed algorithm, which identifies each valid exhaled breath waveform and segmentize 
it into five epochs. As established in previous studies, the slope and area indices of each epoch were 
computed using Equation 2 and 3, respectively [11]. The least squares linear fitting method was used to 
compute the slopes of each sub-cycle. By lowering the residue in accordance with (3), it is possible to 
include the entire CO2 signal while still computing the intercept and slope of the CO2 waveform. 
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Where, slope (S) length is defined by C, Sj defines the jth element, the best fit and weight of jth element are 
defined by Mj and bj, respectively. The CO2 signal and the sampling interval are defined by R(t) and dt in 
area (ARi) computational formula. In addition, the Hjorth parameters of each epoch were extracted. 
Equation 4 defines the computational formula for Hjorth activity (variance) [12]. 

𝜎𝑦
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𝐿
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𝑙=0           (4) 
Where, y(l) defines the CO2 signal, and the L indicates the data length. Mobility is the second Hjorth 
parameter, which indicates the ratio of the standard deviation of the signal's first derivative to that of the 
signal itself.. The computational formula for mobility is as below, where y’(l) refers to the first derivative 
of the signal [13]. 

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦[𝑦(𝑙)] =
𝜎𝑦′

𝜎𝑦
           (5) 

Equation 6 represents the formula to calculate Hjorth complexity [14]. 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦[𝑦(𝑙)] =
𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 [𝑦′(𝑙)]

𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 [𝑦(𝑙)]
=

𝜎𝑦′′/𝜎𝑦′

𝜎𝑦′/𝜎𝑦
        (6) 

The y´(l) and y´´(l) represent the first and second derivative of CO2 signal. The following equations define 
the expression for the derivations. 

𝑦′(𝑙) =
1

𝑇𝑠
[𝑦(𝑙 + 1) − 𝑦(𝑙)]          (7) 
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𝑦′′(𝑙) =
1

𝑇𝑠
[𝑦′(𝑙 + 1) − 𝑦′(𝑙)]          (8) 

Where Ts defines the sampling time interval [12]. In this study, an approximate 2-minute data sampling 
resulted in an approximate of 35 valid exhaled breath waveforms from a single patient. About 1700 valid 
exhaled breath waveforms resulted in feature computation and interpretation for high resolution prediction 
and the ability to detect even minute waveform changes. The EtCO2 value and respiratory rate of a patient 
is computed from the exhaled breath signal. The inspiratory to expiratory ratio is one of the key indices 
analyzed in the present study. The corresponding slopes and areas of the two phases were defined in ratios.  
 

 
Fig 2: Overview of the presented study of detecting COVID-19 from exhaled breath profile analysis.  

 

2.3 Data Analysis 

    A descriptive statistical analysis was performed to present the baseline data acquired in this study. The 
significance of feature characteristics in defining COVID and non-COVID condition was evaluated using 
significance value from paired sample T-test. Receiver operating characteristic (ROC) curves were 
generated for exhaled breath features and indices, where the sensitivity and specificity were quantified 
through area under curve (AUC) and its 95% confidence interval [9].  
 
3. Results 

     In this study, a new approach of exhaled breath segmentation is introduced. A valid exhaled breath cycle 
is segmented into five epochs. The sorting algorithm developed in this study identifies each valid breath 
cycles and segmentize each cycle into the five epochs. The area and slope indices of each epoch were 
computed using the developed algorithm [15]. As the Hjorth parameters are highly approached in 
differentiating asthmatic condition, the parameters are included in the present study for evaluating the 
waveform of COVID and non-COVID subject. The entire computational were performed using the sorting 
algorithm developed in this study. Fig 3 shows the output of a valid exhaled breath waveform for COVID 
and non-COVID condition. Fig 3a-3c shows the exhaled breath waveform extracted from a CAT 2 COVID 
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subject. The shape of waveform deviates from the standard shape. Deviation plays the key role in computing 
the algorithmic output of each epoch. Such variation is analyzed to determine the presence of COVID and 
non-COVID state of a patient based on algorithmic approach. Fig 3d-3f shows the exhaled breath waveform 
of a non-COVID subject. The shape of waveform is close to the standard capnography, which indicates the 
absence of any deviation in the subject breath cycle. 

 

 
Fig 3: Algorithmic approach of feature extraction. (a) – (b) show exhaled breath waveform indicating slope, 
angle, and area of each epoch segmented from a COVID-19 subject breath profile, whereas (d) – (f) indicate 

segmented features for non-COVID subject. 
 
     The primary analysis of features in each epoch were presented as the mean with standard deviation (SD). 
The EtCO2 mean for COVID condition is 36.36 with SD of 3.53, where the non-COVID condition showed 
34.71 mean with 3.46 SD. COVID subjects showed 22.16 mean respiratory rare (RR) with 6.05 SD. Non-
COVID subjects 19.22 mean RR with 4.33 SD. The paired T-test analysis for both EtCO2 and RR values 
showed no significant difference with p values equal to 0.817 and 0.274, respectively. The mean and SD of 
features for each epoch were computed. Slope, area, activity, mobility, and complexity of five epochs in a 
valid breath cycle, resulted in about 25 different features for evaluating COVID and non-COVID condition. 
Table 1 summarizes the significant features out of the 25 features. The slope of E2 showed significant 
variation between COVID and non-COVID condition with 0.016 p-value. The area of E2 and the activity 
of E4 showed high significance with p = 0.000. Mobility of E2 showed p = 0.001, indicating significant 
variation to be considered for evaluating COVID conditions. The complexity feature showed significant 
variation for only E3, with p = 0.042. The inspiratory to expiratory ratio (E4/ E2) computed for slope and 
area showed significant differences with p = 0.005. The rest of features of each epochs indicated 
insignificant variation between COVID and non-COVID condition. The T-test outputs manifest good 
correlation between COVID and non-COVID condition with the p value exhibited by the significance 
features, which is highly approached for preliminary clinical decision making upon COVID-19 diagnosis. 
      Receiver operating characteristics (ROC) revealed good predictive values in comparing the significance 
of exhaled features for predicting COVID and non-COVID condition. The predictive values for EtCO2 and 
RR were moderately higher than the other significant features, with area under curve (AUC) values of 0.617 
and 0.641, respectively. The slope of E2, area of E2, and significant Hjorth parameters showed fair 
compliance with COVID and non-COVID condition with AUC values between 0.500 and 0.550 (Table 1, 
Fig 4). The slope and area of E4/ E2 ratio showed 79.8% and 80.6% of sensitivity and a specificity of 81.1% 
and 80.4%, respectively for prediction good compliance with COVID and non-COVID condition with a 
maximum cut-off value of 1%.  
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      In this study, a two-tailed paired sample T-test was performed as the primary statistical analysis to 
identify the features, which show significant differences between COVID and non-COVID condition. The 
algorithmic simulation showed that slope and area of E2 is significant. As the developed system sensitively 
detects the variation in the exhaled CO2 gas, it is highly expected that significant differences between the 
slope and area of E2 as the E2 indicates the exhalation region of the waveform. These indicate that the slope 
and area feature for E2 are significant to be used in distinguishing COVID and non-COVID condition. The 
mobility feature of E2 showed significant differences. Mobility, which indicates the second derivate of the 
SD proportional to the signal power spectrum can differentiate COVID conditions. Based on p-value 
analysis, the mobility of E2 can be used in discriminating COVID and non-COVID condition. Besides, the 
complexity of E3 and activity of E4 showed significant differences. E3 reveals the EtCO2 peak variation 
between COVID and non-COVID condition, whereas E4 reveals the inspiratory region of the waveform. In 
the presented study, E4/E2 ratio for slope and area feature were statistically computed through the developed 
algorithm. It is justified to be significant in differentiating COVID and non-COVID condition. The 
significant features are further analyzed using ROC analysis. The area under the ROC curve is moderately 
greater than the 0.500 for all significant features. The slope and area of E4/E2 ratio showed a higher AUC 
than the rest, which emphasizes the importance of computing the inspiratory to expiratory ratio in 
identifying COVID and non-COVID condition. The logistic regression coefficient showed good correlation 
between EtCO2 and RR. It revealed that EtCO2 and RR computational analysis is insufficient to identify 
COVID condition. Based on the statistical analyses, Slope of E2, area of E2, E4/E2 ratio for slope and area 
are identified as the promising features to be chosen in discriminating COVID and non-COVID condition.  

 
TABLE I: Statistical analysis performed for the extracted significant features between COVID and non-COVID 

patients. 
Features Mean ± SD P value AUC 95% Confidence interval 

COVID Non-COVID Lower limit Upper limit 
EtCO2 36.36 ± 3.53 34.71 ± 3.46 0.817 0.617 0.50 0.73 
RR 22.16 ± 6.05 19.22 ± 4.33 0.274 0.641 0.53 0.75 
Slope of E2 14.34 ± 7.66 13.98 ± 6.52 0.016 0.502 0.0005 0.89 
Area of E2 25.56 ± 17.22 24.31 ± 14.49 0.000 0.515 0.24 2.38 
Activity of E4 40.52 ± 16.40 42.27 ± 15.50 0.000 0.530 -2.08 -0.11 
Mobility of E2 0.038 ± 0.017 0.038 ± 0.015 0.001 0.530 -0.0007 0.003 
Complexity of E3 8.64 ± 7.34 9.85 ± 8.22 0.042 0.526 -1.56 -0.59 
Slope ratio of E2 3.35 ± 2.25 3.58 ± 2.49 0.005 0.542 0.09 0.40 
Area ratio of E2 0.721 ± 0.468 0.649 ± 0.328 0.005 0.546 0.04 0.099 

 

 
Fig 4: Receiver operating characteristics (ROC) curves for the (a) significant features computed from the 

developed algorithm and (b) for the measured EtCO2 and RR as predictors of good agreement for differentiating 
COVID-19 condition. 
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4. Conclusion 
    This work has supported the alternative approach of detecting COVID-19 infection through the exhaled 
breath profiling using a developed algorithm and emphasized that capnography technology is not only aids 
in ventilation tidal volume monitoring, but also helps in demonstrating the deviation between COVID-19 
infected condition and non-infected condition. The interpretable algorithm delivered desired output by 
segmenting a valid exhaled breath waveform into five epochs and computing its features readings. The 
statistical analyses revealed that slope of E2, area of E2, E4/E2 ratio for slope and area are the promising 
features identified for discriminating COVID and non-COVID condition. The outcome of this work aims 
in implementing in clinical practice as the primary disease detection technique, which will help to clinicians 
to initiative preventive actions and saves many workloads associated with invasive sampling methods. 
 
5. Acknowledgement 

The authors express their gratitude to the Universiti Teknologi Malaysia (UTM) Health Centre and 
Policlinic Siva, Malaysia for their contributions to clinical data collection. This study is supported by UTM 
GUP with grant number R.J130000.7351.4B746 and UNISERF 2023 of Udayana University, Indonesia. 
 
6. References 
 
[1] Xu R, Liu P, Zhang T, Wu Q, Zeng M, Ma Y, et al. Progressive deterioration of the upper respiratory tract and the 

gut microbiomes in children during the early infection stages of COVID-19. Journal of Genetics and Genomics. 
Elsevier Limited and Science Press; 2021;48:803–14. 

 https://doi.org/10.1016/j.jgg.2021.05.004 
[2] Taleghani N, Taghipour F. Diagnosis of COVID-19 for controlling the pandemic: A review of the state-of-the-art. 

Biosens Bioelectron. Elsevier B.V.; 2021;174:112830. 
 https://doi.org/10.1016/j.bios.2020.112830 
[3] Basin S, Valentin S, Maurac A, Poussel M, Pequignot B, Brindel A, et al. Progression to a severe form of COVID-

19 among patients with chronic respiratory diseases. Respir Med Res. 2022;81. 
 https://doi.org/10.1016/j.resmer.2021.100880  
[4] Anderson MR. Capnography: Considerations for Its Use in the Emergency Department. J Emerg Nurs. 

2006;32:149–53. 
 https://doi.org/10.1016/j.jen.2005.12.025  
[5] Peveling-Oberhag J, Michael F, Tal A, Welsch C, Vermehren J, Farnik H, et al. Capnography monitoring of non-

anesthesiologist provided sedation during percutaneous endoscopic gastrostomy placement: A prospective, 
controlled, randomized trial. Journal of Gastroenterology and Hepatology (Australia). 2020;35:401–7. 

 https://doi.org/10.1111/jgh.14760  
[6] Bouazza B, Hadj-Said D, Pescatore KA, Chahed R. Are patients with asthma and chronic obstructive pulmonary 

disease preferred targets of COVID-19? Tuberc Respir Dis (Seoul). 2021;84:22–34. 
 https://doi.org/10.4046/trd.2020.0101  
[7] Yang J, An K, Wang B, Wang L. New mainstream double-end carbon dioxide capnograph for human respiration. 

J Biomed Opt. 2010;15:065007. 
 https://doi.org/10.1117/1.3523620  
[8] Singh OP, Howe TA, Malarvili MB. Real-time human respiration carbon dioxide measurement device for 

cardiorespiratory assessment. J Breath Res. Institute of Physics Publishing; 2018;12. 
 https://doi.org/10.1088/1752-7163/aa8dbd  
[9] Balakrishnan M, Kazemi M, Mahmood NH, Malarvili MB, Humaimi Mahmood N. Investigating Frequency 

Contents of Capnogram using Fast Fourier Transform (FFT) and Autoregressive Modeling (AR) Heart Rate 

https://doi.org/10.17758/HEAIG14.H0923110 50

https://doi.org/10.1016/j.jgg.2021.05.004
https://doi.org/10.1016/j.jgg.2021.05.004
https://doi.org/10.1016/j.jgg.2021.05.004
https://doi.org/10.1016/j.bios.2020.112830
https://doi.org/10.1016/j.bios.2020.112830
https://doi.org/10.1016/j.resmer.2021.100880
https://doi.org/10.1016/j.resmer.2021.100880
https://doi.org/10.1016/j.jen.2005.12.025
https://doi.org/10.1016/j.jen.2005.12.025
https://doi.org/10.1111/jgh.14760
https://doi.org/10.1111/jgh.14760
https://doi.org/10.1111/jgh.14760
https://doi.org/10.4046/trd.2020.0101
https://doi.org/10.4046/trd.2020.0101
https://doi.org/10.1117/1.3523620
https://doi.org/10.1117/1.3523620
https://doi.org/10.1088/1752-7163/aa8dbd
https://doi.org/10.1088/1752-7163/aa8dbd


Monitoring System View project Investigating Frequency Contents of Capnogram using Fast Fourier Transform 
(FFT) and Autoregressive Modeling (AR) [Internet]. Available from: http://www.biomedical.utm.my 

[10] Howe TA, Jaalam K, Ahmad R, Sheng CK, Nik Ab Rahman NH. The use of end-tidal capnography to monitor 
non-intubated patients presenting with acute exacerbation of asthma in the emergency department. Journal of 
Emergency Medicine [Internet]. Elsevier Inc.; 2011;41:581–9. Available from: 
http://dx.doi.org/10.1016/j.jemermed.2008.10.017 

[11] Malarvili MB, Alexie M, Dahari N, Kamarudin A. On Analyzing Capnogram as a Novel Method for Screening 
COVID-19 : A Review on Assessment Methods for COVID-19. Life Journal. 2021;1–26. 

 https://doi.org/10.3390/life11101101  
[12] El-Badawy IM, Omar Z, Singh OP. An Effective Machine Learning Approach for Classifying Artefact-Free and 

Distorted Capnogram Segments Using Simple Time-Domain Features. IEEE Access. Institute of Electrical and 
Electronics Engineers Inc.; 2022;10:8767–78. 

 https://doi.org/10.1109/ACCESS.2022.3143617  
[13] Oh S-H, Lee Y-R, Kim H-N. A Novel EEG Feature Extraction Method using Hjorth Parameter.  
[14] Hjorth BO. TECHNICAL EEG ANALYSIS BASED CONTRIBUTIONS ON TIME DOMAIN PROPERTIES.  
[15] OMPS Singh, MB Malarvili. Review of Infrared Carbon-Dioxide Sensors and Capnogram Features for 

Developing Asthma-Monitoring Device. Journal of Clinical & Diagnostic Research 12 (10).  
 

https://doi.org/10.17758/HEAIG14.H0923110 51

https://doi.org/10.1016/j.jemermed.2008.10.017
https://doi.org/10.1016/j.jemermed.2008.10.017
https://doi.org/10.1016/j.jemermed.2008.10.017
https://doi.org/10.3390/life11101101
https://doi.org/10.3390/life11101101
https://doi.org/10.1109/ACCESS.2022.3143617
https://doi.org/10.1109/ACCESS.2022.3143617
https://doi.org/10.1109/ACCESS.2022.3143617



